🧠
AI
  • Artificial Intelligence
  • Intuitive Maths behind AI
    • Probability
    • Information Theory
    • Linear Algebra
    • Calculus
  • Overview
  • Research Ideas and Philosophy
  • Basic Principles
  • Information Theory
    • Entropy
    • Log Probability
  • Probability & Statistics
    • Random Variables
    • Probability
      • Probablistic Equations
      • Bayes Theorem
      • Probability Distributions & Processes
    • Statistics
      • Measures
      • Z-Scores
      • Covariance and Correlation
      • Correlation vs Dependance
    • Mahalanobis vs Chi-Squared
    • Uncertainty
    • Statistical Inference
      • Graphical Models
      • Estimator vs Parameter
      • Estimation
      • Bayesian/Probabilistic Inference
        • Probabilistic Modelling
        • Problems of Bayesian Inference
        • Conjugate Priors
        • Dirichlet Distribution/Process
        • Posterior Predictive Distribution
      • Sampling-Based Inference
    • Sampling
      • Rejection Sampling
      • Reservoir Sampling
      • Thompson Sampling
    • Bayesian Inference
    • Regression
    • Markov
    • Monte Carlo
      • Monte Carlo Estimators
      • Importance Sampling
    • Kernel Density Estimation
    • Gaussian Processes
    • Gaussian Soap Bubble
  • Linear Algebra
    • Vector Space and Matrices
    • Geometry of System of Linear Equations
    • Determinants
    • Transformations
    • Geometrical Representation
    • Positive (Semi)Definite Matrices
    • Matrix Interpretation
    • Dot Product as Linear Transformation and Duality of Vector-Linear Transformation
    • Norms
    • Linear Least Square
    • Matrix Decomposition
      • QR Decomposition
      • Cholesky Decomposition
      • Eigen Value Decomposition
      • SVD - Singular Value Decomposition
    • Matrix Inversion
    • Matrix Calculus
    • Matrix Cookbook
    • Distributed Matrix Algebra
    • High Dimensional Spaces
  • Optimization
    • Derivatives
      • Partial Derivative
      • Directional Derivative
      • Gradient
      • Jacobian
    • Regularization
    • Gradient Descent
    • Newton's Method
    • Gauss-Newton
    • Levenberg–Marquardt
    • Conjugate Gradient
    • Implicit Function Theorem for optimization
    • Lagrange Multiplier
    • Powell's dog leg
    • Laplace Approximation
    • Cross Entropy Method
    • Implicit Function Theorem
  • Statistical Learning Theory
    • Expectation Maximization
  • Machine Learning
    • Clustering
    • Bias Variance Trade-off
  • Deep Learning
    • PreProcessing
    • Convolution Arithmetic
    • Regularization
    • Optimizers
    • Loss function
    • Activation Functions
    • Automatic Differentiation
    • Softmax Classifier and Cross Entropy
    • Normalization
    • Batch Normalization
    • Variational Inference
    • VAE: Variational Auto-Encoders
    • Generative vs Discriminative
      • Generative Modelling
    • Making GANs train
    • Dimensionality of Layer Vs Number of Layers
    • Deep learning techniques
    • Dilated Convolutions
    • Non-Maximum Suppression
    • Hard Negative Mining
    • Mean Average Precision
    • Fine Tuning or Transfer Learning
    • Hyper-parameter Tuning
  • Bayesian Deep Learning
    • Probabilistic View
    • Uncertainty
    • Variational Inference for Bayesian Neural Network
  • Reinforcement Learning
    • General
    • Multi-armed Bandit
    • Imitation Learning
    • MDP Equations
    • Solving MDP with known Model
    • Value Iteration
    • Model Free Prediction and Control
    • Off Policy vs On Policy
    • Control & Planning from RL perspective
    • Deep Reinforcement Learning
      • Value Function Approximation
      • Policy Gradient
        • Algorithms
    • Multi Agent Reinforcement Learning
    • Reinforcement Learning - Sutton and Barto
      • Chapter 3: Finite Markov Decision Processes
      • Chapter 4: Dynamic Programming
    • MBRL
  • Transformers
    • Tokenziation
    • Embedding
      • Word Embedding
      • Positional Encoding
    • Encoder
    • Decoder
    • Multi-head Attention Block
    • Time Complexities of Self-Attention
    • KV Cache
    • Multi-head Latent Attention
    • Speculative Decoding
    • Flash Attention
    • Metrics
  • LLMs
    • LLM Techniques
    • LLM Post-training
    • Inference/Test Time Scaling
    • Reasoning Models
    • Reward Hacking
  • Diffusion Models
    • ImageGen
  • Distributed Training
  • State Space Models
  • RLHF
  • Robotics
    • Kalman Filter
    • Unscented Kalman Filter
  • Game Theory and ML
    • 1st Lecture - 19/01
    • Lecture 2 - 22/01
    • Lecture 4: Optimization
  • Continual Learning
    • Lecture - 21/01
    • iCaRL: Incremental Classifier and Representation Learning
    • Variational Continual Learning
  • Computer Vision
    • Hough Transform
    • Projective Geometry
      • Extrinsic and Intrinsic Parameters
      • Image Rectification
    • Tracking
    • Optical Flow
    • Harris Corner
    • Others
  • Papers
    • To Be Read
    • Probabilistic Object Detection and Uncertainty Estimation
      • BayesOD
      • Leveraging Heteroscedastic Aleatoric Uncertainties for Robust Real-Time LiDAR 3D Object Detection
      • Gaussian YOLOv3
      • Dropout Sampling for Robust Object Detection in Open-Set Condition
      • *Sampling Free Epistemic Uncertainty Estimation using Approximated Variance Propagation
      • Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics
      • Can We Trust You? On Calibration of Probabilistic Object Detector for Autonomous Driving
    • Object Detection
    • Temporal Fusion in Object Detection/ Video Object Detection
    • An intriguing failing of convolutional neural networks and the CoordConv solution
    • A Neural Algorithm of Artistic Style - A.Gatys
  • Deep Learning Book
    • Chapter 4: Optimization
    • Chapter 5: Machine Learning Basics
    • Chapter 6: Deep FeedForward Networks
  • Python
    • Decorators
    • Packages
      • Pip
    • Gotchas
    • Async functions
  • Computer Science
  • TensorFlow
  • Pytorch
    • RNN/LSTM in Pytorch
    • Dataset/ Data loader
    • Resuming/Loading Saved model
  • Programming
    • Unit Testing
    • How to write code
  • General Software Engineering
    • SSH tunneling and Ngrok
  • How To Do Research
  • Resources
  • ROS for python3
  • Kitti
Powered by GitBook
On this page
  • Why do we need rectification and What does it do
  • Image Rectification Diagram
  • Algorithm
  1. Computer Vision
  2. Projective Geometry

Image Rectification

PreviousExtrinsic and Intrinsic ParametersNextTracking

Last updated 5 years ago

Image rectification is related to the multi-camera or stereo camera setting. When you have images from two camera, you need image rectification. Let's see what is this and how it's done.

Image rectification is a transformation process used to project images onto a common image plane.

  • It is used in to simplify the problem of finding matching points between images (i.e. the ).

  • It is used in to merge images taken from multiple perspectives into a common map coordinate system.

Why do we need rectification and What does it do

Finding point matches in stereo vision is restricted by : Each pixel's match in another image can only be found on a line called the epipolar line. If two images are coplanar, i.e. they were taken such that the right camera is only offset horizontally compared to the left camera (not being moved towards the object or rotated), then each pixel's epipolar line is horizontal and at the same vertical position as that pixel. However, in general settings (the camera did move towards the object or rotate) the epipolar lines are slanted. Image rectification warps both images such that they appear as if they have been taken with only a horizontal displacement and as a consequence all epipolar lines are horizontal, which slightly simplifies the stereo matching process.

Image Rectification Diagram

Algorithm

computer stereo vision
correspondence problem
geographic information systems
epipolar geometry