🧠
AI
  • Artificial Intelligence
  • Intuitive Maths behind AI
    • Probability
    • Information Theory
    • Linear Algebra
    • Calculus
  • Overview
  • Research Ideas and Philosophy
  • Basic Principles
  • Information Theory
    • Entropy
    • Log Probability
  • Probability & Statistics
    • Random Variables
    • Probability
      • Probablistic Equations
      • Bayes Theorem
      • Probability Distributions & Processes
    • Statistics
      • Measures
      • Z-Scores
      • Covariance and Correlation
      • Correlation vs Dependance
    • Mahalanobis vs Chi-Squared
    • Uncertainty
    • Statistical Inference
      • Graphical Models
      • Estimator vs Parameter
      • Estimation
      • Bayesian/Probabilistic Inference
        • Probabilistic Modelling
        • Problems of Bayesian Inference
        • Conjugate Priors
        • Dirichlet Distribution/Process
        • Posterior Predictive Distribution
      • Sampling-Based Inference
    • Sampling
      • Rejection Sampling
      • Reservoir Sampling
      • Thompson Sampling
    • Bayesian Inference
    • Regression
    • Markov
    • Monte Carlo
      • Monte Carlo Estimators
      • Importance Sampling
    • Kernel Density Estimation
    • Gaussian Processes
    • Gaussian Soap Bubble
  • Linear Algebra
    • Vector Space and Matrices
    • Geometry of System of Linear Equations
    • Determinants
    • Transformations
    • Geometrical Representation
    • Positive (Semi)Definite Matrices
    • Matrix Interpretation
    • Dot Product as Linear Transformation and Duality of Vector-Linear Transformation
    • Norms
    • Linear Least Square
    • Matrix Decomposition
      • QR Decomposition
      • Cholesky Decomposition
      • Eigen Value Decomposition
      • SVD - Singular Value Decomposition
    • Matrix Inversion
    • Matrix Calculus
    • Matrix Cookbook
    • Distributed Matrix Algebra
    • High Dimensional Spaces
  • Optimization
    • Derivatives
      • Partial Derivative
      • Directional Derivative
      • Gradient
      • Jacobian
    • Regularization
    • Gradient Descent
    • Newton's Method
    • Gauss-Newton
    • Levenberg–Marquardt
    • Conjugate Gradient
    • Implicit Function Theorem for optimization
    • Lagrange Multiplier
    • Powell's dog leg
    • Laplace Approximation
    • Cross Entropy Method
    • Implicit Function Theorem
  • Statistical Learning Theory
    • Expectation Maximization
  • Machine Learning
    • Clustering
    • Bias Variance Trade-off
  • Deep Learning
    • PreProcessing
    • Convolution Arithmetic
    • Regularization
    • Optimizers
    • Loss function
    • Activation Functions
    • Automatic Differentiation
    • Softmax Classifier and Cross Entropy
    • Normalization
    • Batch Normalization
    • Variational Inference
    • VAE: Variational Auto-Encoders
    • Generative vs Discriminative
      • Generative Modelling
    • Making GANs train
    • Dimensionality of Layer Vs Number of Layers
    • Deep learning techniques
    • Dilated Convolutions
    • Non-Maximum Suppression
    • Hard Negative Mining
    • Mean Average Precision
    • Fine Tuning or Transfer Learning
    • Hyper-parameter Tuning
  • Bayesian Deep Learning
    • Probabilistic View
    • Uncertainty
    • Variational Inference for Bayesian Neural Network
  • Reinforcement Learning
    • General
    • Multi-armed Bandit
    • Imitation Learning
    • MDP Equations
    • Solving MDP with known Model
    • Value Iteration
    • Model Free Prediction and Control
    • Off Policy vs On Policy
    • Control & Planning from RL perspective
    • Deep Reinforcement Learning
      • Value Function Approximation
      • Policy Gradient
        • Algorithms
    • Multi Agent Reinforcement Learning
    • Reinforcement Learning - Sutton and Barto
      • Chapter 3: Finite Markov Decision Processes
      • Chapter 4: Dynamic Programming
    • MBRL
  • Transformers
    • Tokenziation
    • Embedding
      • Word Embedding
      • Positional Encoding
    • Encoder
    • Decoder
    • Multi-head Attention Block
    • Time Complexities of Self-Attention
    • KV Cache
    • Multi-head Latent Attention
    • Speculative Decoding
    • Flash Attention
    • Metrics
  • LLMs
    • LLM Techniques
    • LLM Post-training
    • Inference/Test Time Scaling
    • Reasoning Models
    • Reward Hacking
  • Diffusion Models
    • ImageGen
  • Distributed Training
  • State Space Models
  • RLHF
  • Robotics
    • Kalman Filter
    • Unscented Kalman Filter
  • Game Theory and ML
    • 1st Lecture - 19/01
    • Lecture 2 - 22/01
    • Lecture 4: Optimization
  • Continual Learning
    • Lecture - 21/01
    • iCaRL: Incremental Classifier and Representation Learning
    • Variational Continual Learning
  • Computer Vision
    • Hough Transform
    • Projective Geometry
      • Extrinsic and Intrinsic Parameters
      • Image Rectification
    • Tracking
    • Optical Flow
    • Harris Corner
    • Others
  • Papers
    • To Be Read
    • Probabilistic Object Detection and Uncertainty Estimation
      • BayesOD
      • Leveraging Heteroscedastic Aleatoric Uncertainties for Robust Real-Time LiDAR 3D Object Detection
      • Gaussian YOLOv3
      • Dropout Sampling for Robust Object Detection in Open-Set Condition
      • *Sampling Free Epistemic Uncertainty Estimation using Approximated Variance Propagation
      • Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics
      • Can We Trust You? On Calibration of Probabilistic Object Detector for Autonomous Driving
    • Object Detection
    • Temporal Fusion in Object Detection/ Video Object Detection
    • An intriguing failing of convolutional neural networks and the CoordConv solution
    • A Neural Algorithm of Artistic Style - A.Gatys
  • Deep Learning Book
    • Chapter 4: Optimization
    • Chapter 5: Machine Learning Basics
    • Chapter 6: Deep FeedForward Networks
  • Python
    • Decorators
    • Packages
      • Pip
    • Gotchas
    • Async functions
  • Computer Science
  • TensorFlow
  • Pytorch
    • RNN/LSTM in Pytorch
    • Dataset/ Data loader
    • Resuming/Loading Saved model
  • Programming
    • Unit Testing
    • How to write code
  • General Software Engineering
    • SSH tunneling and Ngrok
  • How To Do Research
  • Resources
  • ROS for python3
  • Kitti
Powered by GitBook
On this page
  1. Deep Learning

Making GANs train

This describes techniques to have stable GAN training

PreviousGenerative ModellingNextDimensionality of Layer Vs Number of Layers

Last updated 6 years ago

  • Batch Norm and weight initialization are important. When I used Batch norm in discriminator, is was showing NaNs, as soon as I removed batch norm network start training which is very different from normal behaviour. Generally introducing batch norm helps in model learn, but here the case is reverse.

  • When weight initialisation is careful, you may choose to not have batch norm.

  • Discriminator should be little weaker than generator for stable training. Many times it happens that discriminator get very powerful over training and having its loss 0. But generator couldn't learn anything.

  • Always have sigmoid at last layer of discriminator if discriminator loss is showing NaN.

  • Leaky Relu is very amazing for to be used in hidden layers(not the last layer) of generator and discriminator. They allow sufficient gradient to be flow back to generator, hence generator weights also updates and not allowing discriminator to get over powerfull. But make sure to use sigmoid in last layers.

Pix2Pix:

  • Images are in range [-1, 1]

  • In generator, gan loss weight is 1.0 and L1 loss weight is 100.0.

  • beta1 in adam optimizer is 0.5.

  • discriminator output is scalar, and activation function is sigmoid. batch norm is used in all layer just not in the last layer. discriminator uses leaky relu as activation function in all middle layers.

  • encoder of generator use batch norm and leaky relu. initial three layer of decoder in the generator uses dropout with prob 0.5, and decoder uses use relu as activation functions. Last layer of encoder of generator have no activation.

  • Output of generator have tanh activation function.

  • batch norm momentum is 0.9 in yenchenlin implementation and 0.1 in affinelayer implementation. Doubt here

  • In the loss use eps=1e-12 with dis_fake or dis_real i.e. log(dis_fake + eps)

  • Use std_dev=0.02 for initializaing weights of truncated normal initializers.

  • affinelayer implementation of pix2pix have 4x4 kernels.

  • Note two things in above.

    • Adding of discriminator dependency on the generator optimizer.

    • using of ema above for updating loss or something.