Lecture 2 - 22/01

Prisoner's Dilemma

If agents do not cooperate, the best (global) outcome possible is missed.

COP 21 Game

  • N governments

  • 2 actions per states

    • Do not pollute (Cost = 3)

    • Pollute (cost=1 and +1 for everyone)

What is the equilibrium?

Multi-Player Game

  • Siimultaneous move games

  • n players, each player pick a strat and occurs a loss.

lk(s1,...sn)=lk(sk,sk)l_k(s_1, ...s_n) = l_k(s_k, s_{-k})

Goal of the player: Minimize their loss

Zero-Sum Two-player Games

Zero-sum: k=1nlk=0\sum_{k=1}^n l_k = 0

n=2

Action for each players: i[n]=1,....,ni \in [n] = {1,....,n} and j[m]j \in [m]

Game

mini[n]maxj[m]lij\min_{i\in[n]} \max_{j \in [m]} l_{ij}

Mix strategies

For example in the game of rock-paper-scissor

We have probabilities over actions of each player as p=[p1,p2,....pn]Δnp=[p1, p2, .... p_n] \in \Delta_nand q=[q1,q2,...,qm]Δmq=[q1,q2, ..., q_m] \in \Delta_m

Δn:=pRn:p1+...pn=1,pi>=0\Delta_n := {p \in R^n: p_1+...p_n=1, p_i >= 0}

Payoff: l(p,q):=Eip,jq[lij]=pTLql(p,q):= E_{i\sim p, j \sim q} [l_{ij}] = p^TLq

Game: minpΔnmaxqΔmpTLq\min_{p\in \Delta_n} \max_{q \in \Delta_m} p^TLq

Nash Equilibrium of a Game

Best worst-case move

sNASH    lk(sk,sk)lk(sk,sk)ss^* \in \text{NASH} \implies l_k(s^*_k, s^*_{-k}) \leq l_k(s_k, s^*_{-k}) \forall s

Theorem

Any game with a finite set of players and a finite set of strategies has a Nash equilibrium of mixed strategies.

`

Last updated