🧠
AI
  • Artificial Intelligence
  • Intuitive Maths behind AI
    • Probability
    • Information Theory
    • Linear Algebra
    • Calculus
  • Overview
  • Research Ideas and Philosophy
  • Basic Principles
  • Information Theory
    • Entropy
    • Log Probability
  • Probability & Statistics
    • Random Variables
    • Probability
      • Probablistic Equations
      • Bayes Theorem
      • Probability Distributions & Processes
    • Statistics
      • Measures
      • Z-Scores
      • Covariance and Correlation
      • Correlation vs Dependance
    • Mahalanobis vs Chi-Squared
    • Uncertainty
    • Statistical Inference
      • Graphical Models
      • Estimator vs Parameter
      • Estimation
      • Bayesian/Probabilistic Inference
        • Probabilistic Modelling
        • Problems of Bayesian Inference
        • Conjugate Priors
        • Dirichlet Distribution/Process
        • Posterior Predictive Distribution
      • Sampling-Based Inference
    • Sampling
      • Rejection Sampling
      • Reservoir Sampling
      • Thompson Sampling
    • Bayesian Inference
    • Regression
    • Markov
    • Monte Carlo
      • Monte Carlo Estimators
      • Importance Sampling
    • Kernel Density Estimation
    • Gaussian Processes
    • Gaussian Soap Bubble
  • Linear Algebra
    • Vector Space and Matrices
    • Geometry of System of Linear Equations
    • Determinants
    • Transformations
    • Geometrical Representation
    • Positive (Semi)Definite Matrices
    • Matrix Interpretation
    • Dot Product as Linear Transformation and Duality of Vector-Linear Transformation
    • Norms
    • Linear Least Square
    • Matrix Decomposition
      • QR Decomposition
      • Cholesky Decomposition
      • Eigen Value Decomposition
      • SVD - Singular Value Decomposition
    • Matrix Inversion
    • Matrix Calculus
    • Matrix Cookbook
    • Distributed Matrix Algebra
    • High Dimensional Spaces
  • Optimization
    • Derivatives
      • Partial Derivative
      • Directional Derivative
      • Gradient
      • Jacobian
    • Regularization
    • Gradient Descent
    • Newton's Method
    • Gauss-Newton
    • Levenberg–Marquardt
    • Conjugate Gradient
    • Implicit Function Theorem for optimization
    • Lagrange Multiplier
    • Powell's dog leg
    • Laplace Approximation
    • Cross Entropy Method
    • Implicit Function Theorem
  • Statistical Learning Theory
    • Expectation Maximization
  • Machine Learning
    • Clustering
    • Bias Variance Trade-off
  • Deep Learning
    • PreProcessing
    • Convolution Arithmetic
    • Regularization
    • Optimizers
    • Loss function
    • Activation Functions
    • Automatic Differentiation
    • Softmax Classifier and Cross Entropy
    • Normalization
    • Batch Normalization
    • Variational Inference
    • VAE: Variational Auto-Encoders
    • Generative vs Discriminative
      • Generative Modelling
    • Making GANs train
    • Dimensionality of Layer Vs Number of Layers
    • Deep learning techniques
    • Dilated Convolutions
    • Non-Maximum Suppression
    • Hard Negative Mining
    • Mean Average Precision
    • Fine Tuning or Transfer Learning
    • Hyper-parameter Tuning
  • Bayesian Deep Learning
    • Probabilistic View
    • Uncertainty
    • Variational Inference for Bayesian Neural Network
  • Reinforcement Learning
    • General
    • Multi-armed Bandit
    • Imitation Learning
    • MDP Equations
    • Solving MDP with known Model
    • Value Iteration
    • Model Free Prediction and Control
    • Off Policy vs On Policy
    • Control & Planning from RL perspective
    • Deep Reinforcement Learning
      • Value Function Approximation
      • Policy Gradient
        • Algorithms
    • Multi Agent Reinforcement Learning
    • Reinforcement Learning - Sutton and Barto
      • Chapter 3: Finite Markov Decision Processes
      • Chapter 4: Dynamic Programming
    • MBRL
  • Transformers
    • Tokenziation
    • Embedding
      • Word Embedding
      • Positional Encoding
    • Encoder
    • Decoder
    • Multi-head Attention Block
    • Time Complexities of Self-Attention
    • KV Cache
    • Multi-head Latent Attention
    • Speculative Decoding
    • Flash Attention
    • Metrics
  • LLMs
    • LLM Techniques
    • LLM Post-training
    • Inference/Test Time Scaling
    • Reasoning Models
    • Reward Hacking
  • Diffusion Models
    • ImageGen
  • Distributed Training
  • State Space Models
  • RLHF
  • Robotics
    • Kalman Filter
    • Unscented Kalman Filter
  • Game Theory and ML
    • 1st Lecture - 19/01
    • Lecture 2 - 22/01
    • Lecture 4: Optimization
  • Continual Learning
    • Lecture - 21/01
    • iCaRL: Incremental Classifier and Representation Learning
    • Variational Continual Learning
  • Computer Vision
    • Hough Transform
    • Projective Geometry
      • Extrinsic and Intrinsic Parameters
      • Image Rectification
    • Tracking
    • Optical Flow
    • Harris Corner
    • Others
  • Papers
    • To Be Read
    • Probabilistic Object Detection and Uncertainty Estimation
      • BayesOD
      • Leveraging Heteroscedastic Aleatoric Uncertainties for Robust Real-Time LiDAR 3D Object Detection
      • Gaussian YOLOv3
      • Dropout Sampling for Robust Object Detection in Open-Set Condition
      • *Sampling Free Epistemic Uncertainty Estimation using Approximated Variance Propagation
      • Multi-Task Learning Using Uncertainty to Weigh Losses for Scene Geometry and Semantics
      • Can We Trust You? On Calibration of Probabilistic Object Detector for Autonomous Driving
    • Object Detection
    • Temporal Fusion in Object Detection/ Video Object Detection
    • An intriguing failing of convolutional neural networks and the CoordConv solution
    • A Neural Algorithm of Artistic Style - A.Gatys
  • Deep Learning Book
    • Chapter 4: Optimization
    • Chapter 5: Machine Learning Basics
    • Chapter 6: Deep FeedForward Networks
  • Python
    • Decorators
    • Packages
      • Pip
    • Gotchas
    • Async functions
  • Computer Science
  • TensorFlow
  • Pytorch
    • RNN/LSTM in Pytorch
    • Dataset/ Data loader
    • Resuming/Loading Saved model
  • Programming
    • Unit Testing
    • How to write code
  • General Software Engineering
    • SSH tunneling and Ngrok
  • How To Do Research
  • Resources
  • ROS for python3
  • Kitti
Powered by GitBook
On this page
  • Loading Model weights and optimizer
  • Batch norm Params
  1. Pytorch

Resuming/Loading Saved model

Loading Model weights and optimizer

When you load pretrained weights for finetuning a network. Then after first iterations your loss actually increases than the pretrained network loss. It is because you didn't load the optimizer state, which may contains momentum of wights etc. And it takes few iterations to get the loss back to the pretrained converged loss value.

Hence, if you want to finetune a model, you may want to load the optimizer as well. If you don't want to load the optimizer, then let the model train for first iterations untill it come back to it original converged loss and then you can do your own things. Note: If you only gonna use the pretrained model for evaluation and not gonna backprop though any loss, then you may not need to have optimizer state.

Batch norm Params

When you load the model, the running mean and variance are loaded for the batchnorm/dropout layers. Hence if you want to use it in eval mode, make sure to call model.train().

PreviousDataset/ Data loaderNextProgramming

Last updated 5 years ago