🧠
AI
Ctrlk
  • Artificial Intelligence
  • Intuitive Maths behind AI
  • Overview
  • Cool Reading list
  • Research Ideas and Philosophy
  • Basic Principles
  • Information Theory
  • Probability & Statistics
  • Linear Algebra
  • Optimization
  • Statistical Learning Theory
  • Machine Learning
  • Deep Learning
    • PreProcessing
    • Convolution Arithmetic
    • Regularization
    • Optimizers
    • Loss function
    • Activation Functions
    • Automatic Differentiation
    • Softmax Classifier and Cross Entropy
    • Normalization
    • Batch Normalization
    • Variational Inference
    • VAE: Variational Auto-Encoders
    • Generative vs Discriminative
    • Making GANs train
    • Dimensionality of Layer Vs Number of Layers
    • Deep learning techniques
    • Dilated Convolutions
    • Non-Maximum Suppression
    • Hard Negative Mining
    • Mean Average Precision
    • Fine Tuning or Transfer Learning
    • Hyper-parameter Tuning
  • Bayesian Deep Learning
  • Reinforcement Learning
  • Transformers
  • LLMs
  • SSL, ViT, Latest vision learning spring
  • Diffusion Models
  • Distributed Training
  • State Space Models
  • RLHF
  • Robotics
  • Game Theory and ML
  • Continual Learning
  • Computer Vision
  • Papers
  • Deep Learning Book
  • Project Euler
  • Python
  • Computer Science
  • TensorFlow
  • Pytorch
  • Programming
  • General Software Engineering
  • How To Do Research
  • Resources
  • ROS for python3
  • Kitti
Powered by GitBook
On this page

Deep Learning

This has all my notes notes for Deep Learning theory, papers, implementation details, etc.

PreProcessingConvolution ArithmeticRegularizationOptimizersLoss functionActivation FunctionsAutomatic DifferentiationSoftmax Classifier and Cross EntropyNormalizationBatch NormalizationVariational InferenceVAE: Variational Auto-EncodersGenerative vs DiscriminativeMaking GANs trainDimensionality of Layer Vs Number of LayersDeep learning techniquesDilated ConvolutionsNon-Maximum SuppressionHard Negative MiningMean Average PrecisionFine Tuning or Transfer LearningHyper-parameter Tuning
PreviousBias Variance Trade-offNextPreProcessing

Last updated 6 years ago